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ABSTRACT 
A method for simultaneously estimating the  admixture proportions of a hybrid population and 

Wright’s fixation index, FST, for that hybrid is presented. It is shown that  the variance of admixture 
estimates can  be partitioned into two components: (1)  due to sample  size, and (2) due to evolutionary 
variance @e., genetic drift). A chi-square test  used to detect heterogeneity of admixture estimates 
from different alleles, or loci,  can now be corrected for both sources of random errors. Hence, its 
value for the detection of natural selection from heterogeneous admixture estimates is improved. 
The estimation and testing procedures described above are independent of the dynamics of the 
admixture process. However, when the  admixture dynamics  can  be specified, FST can  be predicted 
from genetic principles. Two  admixture models are considered here, gene flow and intermixture. 
These models are of value  because  they  lead to very different predictions regarding the accumulation 
of genes from the parental populations and  the accumulation of variance due  to genetic drift. When 
there is not evidence for natural selection, and it is appropriate  to apply these models to data,  the 
variance effective size (N, )  of the hybrid population can  be estimated. Applications are made to three 
human populations: two  of these are Afro-American populations and one is a Yanomamo Indian 
village. Natural selection  could not be detected using the chi-square test in  any  of these populations. 
However, estimates of effective population sizes do lead to a richer description of the genetic structure -~ 
of these populations. 

E STIMATION of the  proportional  contributions 
of ancestral  populations  to  their hybrids has been 

important in genetic analyses of many admixed  human 
populations (cf. CHAKRABORTY 1986). Such admixture 
estimates help to clarify the historical background of 
admixture  and they are becoming useful in genetic 
epidemiological investigations (CHAKRABORTY and 
WEISS 1986, 1988).  Admixed  populations have allele 
frequencies  that are linear  combinations of the allele 
frequencies in their  parental  populations, and since 
admixture affects all  loci equally, the same set of 
admixture  proportions  are  expected  to apply to all 
alleles at all  loci. However,  estimated  ancestral  contri- 
butions vary from allele to allele and  from locus to 
locus for  a  number of reasons; sampling error in the 
estimation of parental and hybrid  population allele 
frequencies and genetic  drift are prominent sources 
of random error,  and systematic biases are potentially 
introduced by natural selection for or against some 
alleles. 

It has been argued in the past that  natural selection 
can be  detected if admixture estimates from  different 
alleles are highly heterogeneous, or if some small 
group of alleles yield admixture estimates that  deviate 
in the  extreme  from  admixture estimates at most 
other alleles (WORKMAN, BLUMBERC and COOPER 
1963; WORKMAN 1968; REED 1969; CAVALLI-SFORZA 
and BODMER 1971).  A biased admixture estimate 
should reflect the cumulative effect of natural selec- 
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tion over several generations, and application of this 
approach was thought  to  be  more powerful than single 
generational studies (REED 1969).  Unfortunately,  the 
results of heterogeneity searches have been equivocal 
because of the variation in admixture estimates from 
other causes (ADAMS and WARD 1973). From an evo- 
lutionary perspective, an  important source of varia- 
tion in admixture estimates, other  than  that caused by 
natural selection, is caused by genetic  drift. 

Genetic drift, like admixture, affects all  loci simul- 
taneously. Its impact is typically evaluated  from the 
parameter FST (WRIGHT 1965, 1969). It is shown in 
this paper  that FST can be used to  measure the effect 
of genetic drift  on  admixture estimates. It is also 
demonstrated  that FsT  is informative  about other as- 
pects of the  hybrid population’s evolutionary  struc- 
ture. For example, FST  is  closely related to  the vari- 
ance effective size of the hybrid  population. 

A  method to estimate simultaneously the ancestral 
contributions to a  hybrid  population and FST is pre- 
sented. This  method allows a  partition of the variance 
of the estimated admixture  proportions  into two com- 
ponents; the first component measures the  error in- 
herent in statistical sampling of existing populations, 
and  the second component measures the  error  that 
accumulates because of evolutionary  change.  In the 
absence of natural selection, this component is a meas- 
ure of genetic drift.  Hereinafter,  the first source of 
error is referred  to as sampling error and  the second 
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source of error is referred  to as evolutionary  error. 
The estimator  for Fsv presented here is distinct from 
other estimators of FST ( c j  COCKERHAM 1969,  1973; 
WEIR and COCKERHAM 1984; LONG 1986).  It is ob- 
tained from the variance of allele frequencies with 
respect to their  expectations based on the  admixture 
model. In order  to obtain this estimate of  FsT, multiple 
locus samples are required  from  the  hybrid  population 
and from all contributing  parental populations. FST 
cannot be computed  for  the  hybrid  population in the 
absence of information  on  the  parental populations. 

A specific model of admixture dynamics is not  re- 
quired by the basic procedures  presented  here,  but if 
the dynamics of admixture can be specified, then FST 
is predictable  from  population  genetic principles and 
it is possible to estimate the variance effective size (Ne)  
of the hybrid population. Two such models of admix- 
ture dynamics and methods  for  estimating N, are 
explored in later sections of this paper.  One of the 
models evaluated,  gene flow, although  ubiquitous in 
the  admixture  literature (cf. GLASS and LI 1953), is 
found to be unusual with respect to genetic  drift 
because there will not be a single value of FST common 
to all alleles at all  loci. When admixture takes the 
form of gene flow, the  procedures  developed  here 
estimate an  average Fsl- pertaining  to all  loci sampled. 

The variance formula  for  admixture estimates de- 
rived here is used to improve  a chi-square statistic that 
has been designed to  detect  natural selection from 
heterogeneity  among  admixture estimates obtained 
from different alleles (CAVALLI-SFORZA and BODMER 
1971). There  are two major  problems with the chi- 
square test (in its original form)  that have rendered 
its results controversial. First,  the test confounds  het- 
erogeneity due to  natural selection and genetic  drift 
(CAVALLI-SFORZA and BODMER 1971; ADAMS and 
WARD  1973).  Second,  the  method  treats  different 
alleles that segregate within the same locus as if they 
are statistically independent.  Thus, notions of random 
sampling are violated. The methods  derived here 
rectify these problems and  the  interpretability of a 
significant chi-square is clarified. 

The new methods and approaches for  admixture 
analysis described above are applied to  three admixed 
human populations in the  later sections of this paper. 
The populations analyzed are of historical interest 
and they are useful for  demonstrating  the distinctions 
between the tw70 theoretical models of admixture  ex- 
amined here. 

A BASIC  ADMIXTURE/DRIFT  MODEL  AND 

Suppose that  one  codominant allele from each of 
several unlinked loci  is chosen for analysis (multiple 
alleles and dominance are dealt with  in a  later section 
of this paper). Let A,  designate the chosen allele from 
the ith locus (i = 1, . . , I ) ,  and P h i ,  Pli, and Py1 be the 
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values  of  its frequencies in the  hybrid  population, the 
first parental  population, and  the second parental 
population, respectively. If admixture  and genetic 
drift  are  the only evolutionary process that have af- 
fected the hybrid  gene  pool,  then 

P h t  = p ' P l i  + (1 - p) ' P2j + Eer (1) 
= PPI + I.L * (f'lt - P2i) + €et 

where p is the  proportionate  contribution of the 1st 
parental  population,  (1 - p) is the  proportionate con- 
tribution of the  2nd  parental  population, and is the 
error  due to  genetic  drift. The expectation of P h i  is 
p a Pli + (1 - p) - P2,; for  convenience, this expecta- 
tion will be  denoted E [ P h i ]  = ai. The expectation of t , i  

is zero,  but  the  expectation of its square,  and  hence 
its variance, is not. The variance of the  hybrid 
allele frequency caused by genetic  drift is c p ( p h ; )  = 

If P I ,  and P2, are known parameters,  the  method of 
weighted least squares (WLS) can be used to estimate 
@ from  a sample of hybrid  population  genotypes (cf. 
ELSTON 197  1 ; LONG and SMOUSE 1983).  For these 
purposes, let F h ,  be  the maximum likelihood estimate 
of the allele frequency in the hybrid  population based 
on  a sample of N, - individuals. The expectation of P h i  

is ai, however P h i  contains  a  component of random 
error, t s j ,  due  to statistical sampling. The expectation 
of t,, is zero, assuming that  the  population is large 
and  random mating, and its variance, d ( p h i ) ,  is 
E[Fh, - P h i ] *  = P h i  (1 - P~, ) /~N, .  The two error terms, 
e,, and eel ,  are assumed to be  independent,  and  accord- 
ingly, the variance of p h , ,  with respect to  both  genetic 
drift  and statistical sampling, is a:( p h i )  + a:( phi ) .  These 
quantities are illustrated in Figure 1. Table 1 provides 
a list  of definitions and symbols that will be used 
throughout this paper. 

T o  obtain the WLS estimate of p, Equation 1 is 
rewritten as 

E [ P h j  - a i l 2 .  

( F h l  - ~ 2 , )  = I.L * - P 2 i )  + (2) 

where the  term ei is the sum of the two random 
components, ie., E ,  = + E +  The admixture  param- 
eter, p, is then  estimated by defining  a vector X = 

matrix V with elements (v,,] E [ P h 1 ] ( 1  - E[Ph,]),and 
a vector y = [(Phi - P ~ I ) ,  ( P h 2  - ~ 2 2 ) ,  e - . ,  ( ~ h ,  - 
P2,)]'. The estimate of I.L is given by 

[(PI] - Pz1), (P12 - P22), - e ,  (PI, - P21)IT, a diagonal 

M = (XTV"X)"XTV"y. (3) 

The solution to Equation 3 is obtained iteratively 
(LONG and SMOUSE 1983). At each iteration,  the ex- 
pected hybrid allele frequencies, E [ P h i ]  = x,, are ap- 
proximated by i;, = PP1 + Ma (PIz - P2i). Following the 
usual steps ( c j  NETER and WASSERMAN  1974),  an 
estimate of the variance of the  admixture  estimate is 
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p = 0.50 

Ne = 100 

N, = 10 

0 . 3 5  0 . 4 0  0 . 4 5  0.50 0 . 5 5  0 . 6 0  0 . 6 5  

PZ i phi 'Ti phi pli 

FIGURE 1 .-The quantities of interest to this paper are illustrated 
using a simple simulation. An admixed population (1 locus) was 
formed by simple Intermixture between two parental populations 
with parameters, P, P I ,  and P',, as  shown above. Following popula- 
tion formation,  the admixed population was assigned an effective 
population size N. = 100, and allowed to drift for five generations. 
Following the five generations of drift, a sample of N ,  = 10 individ- 
uals was drawn. The allele frequencies for the first four generations 
of drift are indicated by (0) and  the allele frequency, P h , ,  at  the 
fifth generation is denoted 0 .  The estimated allele frequency, Ph,, 
is marked with (A). Note  that P h ,  = a, + tei + ts,. The Intermixture 
drift model is explained in greater detail in a later section of this 
paper. 

given by 

s' ( M )  = MSE - (XTV"X)" (4) 

where the mean squared error (MSE) of the  admixture 
model is given by 

MSE = (y - X - M)T * V" + (y - X M ) / ( f -  1). (5) 

The mean squared error (MSE) estimates 
E[($,,, - rj)'r, (1 - rJ] ,  which is the standardized 
variance of estimated  hybrid  population allele fre- 
quencies. This quantity is very informative  about the 
breeding  structure of the hybrid  population be- 
cause it is closely related  to WRIGHT'S (1965,  1969) 
fixation index, Fsr. WRIGHT (1965, p. 402;  1969, 
p. 295,  and elsewhere) defines the quantity FST = 
u&-)/[qT(l - q ~ ) ] ,  as the  "ratio of the actual allele 
frequency variance of the subdivisions to its maximum 
possible value qT(1 - q T )  that is expected if the subdi- 
visions are completely isolated and each completely 
fixed" (q denotes  the allele frequency).  Wright used 
the variance of subdivisions, a&-), to pertain to: ( I )  
the  aggregate of an essentially infinite number of 
existing subdivisions (e.g., WRIGHT 1969, p. 294), or 
equivalently, (2) an infinitely large number of isolated 
lines  which might, hypothetically, have  been  drawn 
from  a  founding stock (WRIGHT 1965, p. 407; 1951, 
p. 328). The latter  interpretation is necessary for 
analysis of an isolated population, or line, such as the 
hybrid  population  of the model presented  here. The 
parameters of u : ( p h i )  and ri defined in this paper 

TABLE 1 

Summary of symbols and notation used 

ph, = frequency of A, in the hybrid population 
PI, = frequency of A, in the 1st parental population 
P,, = frequency of A, in the 2nd parental population 
p = contribution of the 1st parental population to the hybrid 

e<, = drift deviation of the  ith allele, i.e., ph, - T, 
<f(flh,) = E [ P h ,  - a,]' = drift variance of the ith allele 
ph, = maximum likelihood estimate of pht 
N ,  = sample size drawn from the hybrid population 
t5, = sampling deviation of the  ith allele, i . e . ,  - Ph, 
uf(ph,)  = E[P& - PA,]' = sampling variance of the ith allele 
t, = e,, + e,, 
M = weighted least square (WLS) estimate of P 
ii, = Pp, + M . (Pit - P2J approximation of T, 

s'(M) = expected variance of the  admixture estimate 
MSE = mean squared error of the  admixture model 

F& = estimate of Fsr 
sf(M) = component of s 2 ( M )  due  to statistical sampling 
s : ( M )  = component of s'(M) due  to genetic drift 
N,  = variance effective size  of the hybrid population 
N,* = estimate ofN, 
a = generational contribution of the  donor population to the 

ii = estimate of a 

f f ,  = E[Pht] = &I ' PI, + (1 - P) ' P28. 

FST = u?(flhz)/[Ts(l - a,)] 

recipient population (gene flow model) 

correspond to WRIGHT'S parameters a& and q T ,  

respectively. 
The relationship between FST and  the MSE of the 

admixture model is demonstrated by considering the 
expected variance of P h i  about ? ~ i  

E[$& - Ti]'  = u : ( p h i )  + u:($hi)  

= E [ p h i  - p h i ] *  + E[phi - Ti]' 

+ u;(Phz). 

After simplification, and using the notation E [ P h i ]  = 
T i ,  

Upon standardization by ri (1 - rJ, 
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and 

F,*, = 2Ns/(2Ns - l)[MSE - l/(2Ns)]  (10) 

can be used to estimate FST. Since the terms in MSE 
are standardized by the estimate, ;i ( 1  - g), rather 
than  the  parameter ?r a (1 - T), Equations 9 and 10 
are approximations. Nevertheless they are nearly un- 
biased estimators when FST is reasonably low  (say 
Fsl- < 0.10) or, many loci have been assayed (J. SOBUS 
and J. C. LONG, unpublished computer simulations). 

With these points in mind, the estimated variance 
of the  admixture  estimate, s2(M), can be partitioned 
into two additive  components 

s'(M) = sf(M) + s:(M) (1 la) 

where, 

and 

s:(M) = (X'V"X)" * F&[1 - l/(2Ns)]. (1 IC) 

It is instructive to review several points  before  pro- 
ceeding. First, the variance of the  admixture  estimate 
does not tend  to  zero by increasing the  number of 
individuals sampled; it tends to zero as the  number of 
loci  assayed is increased.  Second, ELSTON (197 1) in- 
troduced weighted least squares and maximum likeli- 
hood estimators for p under  the assumption that  the 
hybrid  population has not evolved by genetic  drift.  It 
can be shown that s f ( M )  is the  estimated variance of 
both of these  estimators. Third, although  Wright's 
standardized variance definition of  FST  has been used 
so far,  the  correlational definitions of FsT (WRIGHT 
1965; COCKERHAM 1969,  1973; WEIR and COCKER- 
HAM 1984) apply equally well. As points of reference, 
the  parameter a; . (1 - 7rJ is equivalent to  the param- 
eter a1 defined by REYNOLDS,  WEIR and COCKERHAM 
(1983) and implicit in WEIR and COCKERHAM (1984), 
and af(pht) is equivalent to  their aid. 

EXTENSION TO MULTIPLE  ALLELES, 
DOMINANCE  AND  UNCERTAIN  PARENTAL 

POPULATIONS 

Neither multiple alleles nor dominance  presents  a 
serious barrier  to  the  methods  described  above. Mul- 
tiple alleles can be  accommodated as follows. Expand 
X and y so that Phi is the frequency of the  ith allele 
the kth population. The alleles may be at  the same 
locus, or  at  separate loci, but  one allele from each 
locus must be discarded from analysis to eliminate 
redundancy of information. It does  not  matter which 
allele from  a locus is discarded  from analysis (APPEN- 
DIX). For the  matrix V, retain  the diagonal elements 
as they have been defined,  but in each off-diagonal 
position use V, = -E[Ph,] - EIPhl], where  the alleles a 
and j segregate at  the same locus. The expectation of 

>ong 

MSE remains [ 1/2N + FST - ( 1  - l/2Ns)], because an 
estimate of F ~ T  can be  obtained  from all pairs of alleles 
at a locus (NEI 1965), i . e . ,  

Dominance among alleles at a locus will not affect 
s:(M), but  the sampling portion of the variance, sf(M), 
is altered. Eq. 4 still estimates s'(M), but its partition 
into s?(M) and s:(M) requires special treatment. T o  
obtain s?(M), V is replaced with a new matrix, V*. 
The elements of V*" are  the sampling variances of 
hybrid  population allele frequencies  obtained using 
maximum likelihood estimation procedures. Follow- 
ing Lr ( 1  976), we can obtain  these  elements  from the 
equation 

where PH, is the probability of the cth phenotypic 
class (c = 1 ,  - , C )  in the hybrid  population, and 
dPH,/aBi is the partial  derivative of the phenotypic 
class  with the  parameter of interest (ie.,  Phi) .  Making 
this substitution, 

sf(M) = - * (XTV*"X)" 1 
2Ns 

and s:(M) should be  estimated, 

s?(M) = s'(M) - s f ( M ) .  ( 1  5 )  

If  the alleles are codominant, V* reduces to V and all 
estimation procedures  remain  the same. 

The assumption that  parental  population allele fre- 
quencies are known without error is the final point  of 
concern. While this assumption can never  be fully 
met, it is generally assumed (REED 1969; ADAMS and 
WARD 1973) that allele frequencies  obtained as un- 
biased estimates, with  small standard  errors,  from  the 
modern  descendants of the  correct  ancestral popula- 
tions will serve the purpose. This should be true  for 
the  method  described above. As long  as there is no 
systematic error in the estimation of ancestral fre- 
quencies, the main impact of uncertain ancestral fre- 
quencies should be the amplification of  MSE. Hence, 
our estimate of ?(M)  should be  appropriate, as should 
our estimate of s:(M); however,  the  estimate of s:(M) 
will include error in estimation of ancestral allele 
frequencies as well as genetic  drift. If parental  popu- 
lation allele frequency estimates are  obtained from 
very  small samples, then following CAVALLI-SFORZA 
and BODMER (197 1) and LONG and SMOUSE (1983), 
the matrix 

U = [V/(2Ns) + M'[VI/(~NI)] (16) 

+ (1 - M)'[V*/(2N*)11 

should replace the matrix V in Equation 3-5. The 
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matrices VI and V2 are  the variance-covariance mat- 
rices of allele frequencies in the  parental populations, 
and N, and N2 are their sample sizes. 

HETEROGENEITY OF ADMIXTURE  ESTIMATES 

CAVALLI-SFORZA and BODMER (1 97 1 )  presented  the 
heterogeneity chi-square statistic, 

X?,-') = Zi(Mi - M)'/V(Mi) ( 1  7) 
where M is the weighted average of admixture  pro- 
portions  computed  from all alleles, M ,  is the estimate 
from  the  ith allele, and V(Mi) is the variance of Mi. 
If a total of "I" independent alleles are assayed, 
x'(Z - 1) follows a chi-square distribution with I - 1 
degrees of freedom. Our WLS estimate  differs very 
slightly from  the weighted average that they use, and 
our estimates of V(M,)  will be identical to  theirs if the 
weight matrix U, and  the variance formula  (Equation 
1 lb) are employed. Since Equation 1 l b  assumes no 
evolutionary error, this test will detect  heterogeneity 
among  admixture estimates regardless of whether it 
is due to  natural selection or genetic  drift. Thus,  the 
two most (evolutionarily) interesting sources of error 
in admixture estimates are confounded. 

The test can easily be  improved by letting M ,  and 
V(M,)  pertain to  the  ith locus instead of the ith allele, 
thereby  eliminating  redundancy of information,  and 
using the variance formula 

V(M,) = (XTV-'X)-' * MSE (1 8)  

where  the vector X is reduced to only those alleles at 
the  ith locus, but MSE pooled from  the analysis  of  all 
loci. Thereby,  the variance of the  admixture estimates 
accounts  for the  error  introduced by sampling the 
hybrid  population and  for  the  error resulting  from 
genetic drift  (including error in parental  population 
allele frequencies) in the hybrid  population. 

MODELS OF ADMIXTURE  AND  ESTIMATION 
OF Ne 

The expectations of FST, MSE and s ' (M)  can be 
obtained  from first principles of population genetics 
when the dynamics of admixture  and  drift can be 
specified. T w o  such models will be evaluated here. In 
the first model, the hybrid  population is formed by a 
single event of intermixture between two parental 
populations. Hereinafter this model is referred  to as 
intermixture. In the second model, there is gene dif- 
fusion from  a  donor  population  (parent)  into  a recip- 
ient  (hybrid)  population,  but  not vice versa. This 
process is classically referred  to as Gene Flow and it is 
thought  to apply to major racial groups such as Afro- 
Americans. 

Intermixture: The admixture effects of this process 
are diagrammed in Figure 2A. The admixture  pro- 
portions are established at  the inception of the process 

INTERMIXTURE 

A 
Parent 1 Parent 2 

\., H y b r i d ' Y  

I 
.1 

1 
I 

B GENE FLOW 

Recipient Donor 

(lh7 E 3  1 
FIGURE 2.-Admixture  models. T h e  dynamics of population  ad- 

mixture fot- the  intermixture  and  gene flow models  are  diagrammed 
above. 

and all subsequent evolution is  by genetic drift.  There- 
fore,  a single will apply to all generations while Fsl-, 
MSE and s2(M) progressively increase with time.  It is 
well established ($. WRIGHT 1969; p. 345) that, FST, 
after t generations of drift will be 

= 1 - exp(-t/2Ne). 

Accordingly, we can find  the  expected MSE, at any 
time, t,  for any sample size 

1 
2Ns 

E[MSE] = - + (')FsT 

With this relationship established, it is possible to 
estimate the variance effective size  of the hybrid  pop- 
ulation, using 

N f  = - t / [ 2  In( 1 - F&)] (2 1) 

where F&  is the estimate of FsT- obtained  from Equa- 
tion 10. Application of this formula  requires  a good 
estimate of the  length of time since the formation of 
the hybrid population. Such estimates are readily 
available for many  of the populations that  are of most 
interest. 
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Gene flow: As shown in Figure 2B, the recipient 
(hybrid)  population receives a  constant  proportion, a, 
of  its genes from  a  donor  population every generation. 
The cumulative portion of genes  from the  donor 
population, p, is not  constant;  after t generations of 
admixture, it is given by p = 1 - (1 - a)‘. The equation 
to estimate a follows from (GLASS and LI 1953) 

ii = -In(l - M)/t ( 2 2 )  

where M is the estimate of p obtained  from Equa- 
tion 3. 

The admixture dynamics of this model are well 
established (GLASS and LI 1953),  but  the effects of 
genetic drift in the  hybrid have not  been investigated 
heretofore. Recall that (‘)FsT (defined  for  an  ith allele) 
is 

where (‘)u:(phi) is the evolutionary variance of the  ith 
allele frequency (in the hybrid  population) in the t-th 
generation,  and (‘)x, is its expected allele frequency. 
(‘)T~ is obtained simply from  (1 - (‘)/A) . PI, + @)p P2,. 

It  will change every generation until it equals the 
allele frequency in the  donor population. By extension 
of the principles of variance of gene  frequencies in 
finite populations (WRIGHT 1969, p. 346)  to  account 
for  migrants,  the  evolutionary variance of the allele 
frequency under gene flow  is obtained  from 

(‘)cr;(phi) is combined with %, to yield an  estimate of 
(‘)FS,. (Equation 23) .  The expected MSE assuming gene 
flow remains  (Equation 2 3  is used for (‘)FsT). 

- - 
1 

2Ns 
E[MSE] = - + (‘)FST . 

The conditions of the  gene flow model are unlike 
those of the  intermixture model because (‘)FsT will 
approach  an  equilibrium value less than unity. The 
equilibrium point is 

A 

Fsl- = 
(1 - a)2 

2N, - (2N,  - 1)(1 - a)2 ( 2 5 )  

which is identical to  the equilibrium Fsl- under 
WRIGHT’S (1969, p. 291) island model of population 
structure. If FsT is close to its equilibrium value, and 
CY is small, say CY 5 0 . 0 2 ,  the formula 

can be used to estimate the variance effective size  of 
the hybrid population.  However,  these are very re- 
strictive conditions and it will almost always be pref- 
erable  to  manipulate  Equation 24 numerically to es- 
timate the effective population size. 

Gene flow can be profitably considered  a special 
case  of the island model,  but some new considerations 
regarding  the model dynamics must be  recognized. 
While WRIGHT was concerned with the equilibrium 
of  the  model,  the dynamics have been explored as a 
special  case  of the migration matrix (BODMER and 
CAVALLI-SFORZA  1968; SMITH 1969; MORTON 1969; 
IMAIZUMI, MORTON and  HARRIS  1970).  Here it is 
assumed that  the  migration/drift process begins with 
a set of demes  drawn  independently  from  a panmictic 
population. Differentiation among  the  demes  then 
proceeds  up to  the equilibrium  point. An important 
feature of this assumption is that  the expected allele 
frequencies at a locus do not  change  from  generation 
to  generation,  nor do the expected allele frequencies 
vary across demes. Under these conditions there is a 
single value  of  FST that  pertains to all alleles at all  loci. 
With gene flow, each expected allele frequency  changes 
until convergence with the  donor population is real- 
ized. Until convergence,  a single FST will not apply to 
all  alleles at all  loci. Equation 10 provides an average 
F& over all alleles analyzed. Although FST does  not 
vary greatly among alleles, estimates of the effective 
size  of the  population  should  be  computed separately 
for each allele and  then averaged. Since it is the 
reciprocal of N, that  enters into Eq. 24, the harmonic 
average of the  estimated effective population size 
from each allele should  be  employed. 

Distribution of N,*: The usefulness of effective 
population size estimates depends heavily on  their 
precision. There  are two major  barriers  to  the  adop- 
tion of  usual statistical procedures  for evaluating this. 
First, the estimation methods  for Ne render a  standard 
error formula  for NP algebraically intractable. Sec- 
ond, even if it were possible to derive  a  standard error 
for N,*, its distribution is heavily right skewed and 
asymmetric confidence intervals must be used. With 
these considerations in mind, the bootstrap  procedure 
(EFRON 1979; EFRON and GONG 1983; DIACONIS and 
EFFRON 1983) is an  appropriate tool for  approximat- 
ing the  distribution of N?.  

Briefly, the steps of the  bootstrap  procedure are as 
follows. (1) An estimate of FST  is obtained  for each 
allele analyzed, following the expectations established 
in Equation 9. Occasionally these estimates will be 
negative, in  which  case zero should be  substituted for 
the negative value. ( 2 )  An estimate of N ,  should be 
obtained  from F& for each allele using Equation 2 1 ,  
or Equation 2 4 ,  depending  on  the  appropriate  admix- 
ture model. If F& is negative,  then the only realistic 
estimate of Ne is infinity. (3) The observed frequency 
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distribution of N ,  estimates is resampled with replaw- 
merit a  large number of times (say ~0,000) .   The 
number of variates in each  bootstrap sample is the 
Same as  the  number  of alleles analyzed in the original 
data set and  the sampling is done with replacement. 
(4) For each bootstrap sample, an  average effective 
population size  is computed  as  the  harmonic  average 
of the bootstrapped variates. The approximate confi- 
dence limits on NF are obtained by using the  appro- 
priate  upper  and lower percentiles of  the  bootstrap 
distribution. 

HUMAN  POPULATION  EXAMPLES 

The utility of the above  theory  for the analysis  of 
actual populations will now be  demonstrated  on  three 
human population examples. In each example, ances- 
tral  contributions to  the hybrid will be  estimated,  a 
chi-square test for heterogeneity of admixture esti- 
mates among alleles will be  performed,  and additional 
insights into  the  genetic  structure of the hybrid pop- 
ulation will be gleaned  from F&. The first two ex- 
amples are Afro-American populations and  the  gene 
flow model will be  more  appropriate. The third  ex- 
ample is a Yanomamo Indian village that became 
admixed with neighboring Ye’cuana Indians. The In- 
termixture model will be  more  appropriate  for this 
population. 

Claxton  Georgia  (Afro-American): The Claxton 
Afro-American population was sampled in the early 
1960s (COOPER et al. 1963); its census size was 1287 
individuals at this time. Genetic  data consisting of 15 
alleles at 12 informative loci JABO, Duffy, GGPD, Hb, 
Hp, Js, Kidd, M,  P, Rh, S, T) are suitable  for  admix- 
ture analysis. The sample sizes varied between 133 
and 304 individuals per locus. Like other Afro-Amer- 
ican populations, it is assumed that  the Claxton pop- 
ulation has received Caucasian genes  for about 12 
generations. 

Originally, WORKMAN  and co-workers ( I  963)  con- 
cluded that  admixture estimates obtained  from  their 
markers fell into two categories. In  the first category, 
the  marker alleles attributed  about 10% of the Clax- 
ton  gene pool to Caucasian origin and  about 90% to 
African origin. Most genetic  markers fell into this 
category and  the  admixture  proportions  are similar 
to  expectations based on ethnohistorical  considera- 
tions. Appreciably higher estimates of the Caucasian 
contribution to  the Claxton Afro-American popula- 
tion were obtained  from alleles in the second category. 
The alleles falling into this category were G6PD-, 
Hp’, Tfd  and Hb‘. This  group was identified as selec- 
tively  biased because of the presence of GGPD and 
Hb’. Significant heterogeneity chi-squares for  these 
data have been observed in subsequent analyses 
(CAVALLI-SFORZA and BODMER 197 1; ADAMS and 

WARD  1973)  but  the overall impression is that genetic 
drift is likely to be  a  major  contributor. The signifi- 
cance of the  heterogeneity chi-squares will be reex- 
amined here using the  method  developed in this pa- 
per. Estimates of ancestral allele frequencies  for  the 
present analyses are those of ADAMS and  WARD 
(1  973). 

Sapel0  Island  (Afro-American): Later in the 
1960s, the Afro-American population living on Sapelo 
Island,  Georgia, was sampled for the same genetic loci 
(BLUMBERG and HESSER 1971) as the Claxton  popu- 
lation. There were only 21 1 Afro-American residents 
on Sapel0 Island and sample sizes ranged from 14 1 to 
191 individuals per locus. Although  gene flow oc- 
curred  over  the same 12-generation  period, the Sa- 
pelo Island Afro-Americans were thought  to  be less 
admixed,  and to have been somewhat isolated from 
other Afro-American populations as well. A  dichoto- 
mous grouping of admixture estimates was not ob- 
served for Sapelo Afro-Americans, but  there was a 
significant correlation of admixture  estimates between 
Sapelo and Claxton Afro-Americans. This correlation 
of admixture estimates was interpreted as good evi- 
dence  for  natural selection (BLUMBERG and HESSER 
197 1). Later, ADAMS and  WARD  (1973)  found a sig- 
nificant heterogeneity chi-square for Sapelo Island; 
however, they cautioned  that genetic drift  as well as 
natural selection could have produced this result. The 
parental  population allele frequencies compiled by 
Adams and Ward (1 973) will also be used for  reana- 
lyzing Sapelo Island. 

Borabuk (Yanomamo  Indian): Most of the Yano- 
mamo  Indians of Northwestern Brazil and  Southern 
Venezuela have been isolated from  both Caucasian 
and  other Amerindian  populations until quite  re- 
cently. An exception  to this isolation is provided by 
the Yanomamo village Borabuk. Historical accounts 
(CHAGNON et al. 1970) place this village  in close prox- 
imity  with a Ye’cuana Indian village, Huduaduiia, 
during  the later  part of the  nineteenth  century. Ge- 
netic exchanges took place during this time and a few 
Ye’cuana  men and women are known to have had an 
extraordinary impact on  the Borabuk gene pool 
(CHAGNON et al. 1970).  During  the  twentieth  century 
the Borabuk population has remained relatively iso- 
lated from the Ye’cuana and  other Yanomamo vil- 
lages, thus  the  Intermixture model is more  appropri- 
ate to this population. Approximately 6  generations 
passed between the influx of Ye’cuana genes into 
Borabuk and  the  time of sampling. Polygyny and 
other aspects of Yanomamo social organization 
(CHAGNON  1968),  and  the fact that this village was 
nearly decimated by a disease epidemic early in this 
century,  indicate  that Borabuk’s effective population 
size is quite small. Borabuk, like other Yanomamo 
villages fluctuates in actual size, the seventy-five indi- 
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TABLE 2 

Admixture estimates and variances 

Hybrid 
population  ancestor 

First Second  Standard 
ancestor error s '(M) s:(M) s?(M) 

Claxton African  Caucasian k0.051 0.0026  0.0019 0.0007 
0.864 0.136 

(A = 0.012) 

Sapelo Island African Caucasian k0.055  0.0300 0.0298 0.0002 
0.932  0.068 

(A = 0.006) 

Borabuk Yanomamo Ye'cuana +O. 194  0.0377  0.0318  0.0059 
0.640 0.360 

TABLE 3 

Heterogeneity analysis 

Claxton  Sapelo Borabuk 

Locus M ,  V(MJ Xf Locus M, V(MJ X? Locus M ,  V(Md X :  

0.1 1 0.14 0.00 Rh 0.44 0.25 0.56 Fy -6.00 21.99 2.01 
M -0.15 10.69 0.01 M -0.85 18.83 0.04 Jk 1.23 2.31  0.15 

-0.30 0.31 0.61 S -0.05 0.53 0.03 Le 0.92 0.29  0.27 
FY 0.1 1 0.01 0.16 Fy 0.07 0.00 0.00 Di -1 .oo 1.40 1.92 
P -0.23 0.10 1.31 P 0.80 0.18 3.02 MNS 1.18 0.39 0.74 
Jk -0.59 0.23 2.30 Jk -0.12 0.40 0.08 Rh 0.46 0.09 0.38 
J S  -0.05 0.1 2 0.30 Js -0.70 0.22 2.69 Hp 1.02 0.15 0.98 
T -0.38 0.37 0.70 T -0.4 1 0.65 0.35 Gc 0.00 2.95 0.14 
HP 0.63 0.05 5.06 Hp 0.23 0.08 0.33 PGM 0.50 6.06 0.00 
G6PD 0.34 0.07 0.58 G6PD 0.29 0.13 0.36 ACP -1.00 1.12 2.41 
Hb 0.53 0.1 5 1.03 Hb 0.44 0.28 0.49 

Total x' 12.07 8.43 9.00 
d.f. (1 1) (1 1) (10) 

A B 0  0.15 0.0 1 0.01 AB0 -0.0 1 0.01 0.47 P 
Rh 

1.00 24.68 0.01 

S 

Locus abbreviations: blood groups: (ABO) ABO, (Rh) rhesus, (M, S and MNS) MNSs, (Fy) Duffy, (P)  P, Uk) Kidd, u s )  Sutter, (Di)  Diego. 
Erythrocyte and serum protein loci: (Hp) haptoglobin, (Gc) group specific component, (PGM) phosphoglucomutase, (ACP) red cell  acid 
phosphatase, (G6PD) glucose 6-phosphate dehydrogenase, (Hb) hemoglobin &chain, (T) phenylthiocarbamide tasting. 

viduals sampled represented almost all people present 
during  the visit, the de facto size was probably less than 
100 individuals. Allele frequencies at eleven loci 
(ACP, Diego, Duffy, Gc, Hp, Kidd,  Le, MNSs, P, 
PGM, Rh) for  Borabuk,  Huduaduiia, and  the Sha- 
matari (Yanomamo ancestor) are given in an  earlier 
paper  (LONG and SMOUSE 1983). 

RESULTS 

Estimates of the ancestral  contributions  to  each of 
these three populations are presented in Table 2. 
Admixture estimates for  the Afro-American popula- 
tions are similar to the previously published estimates 
for  these  populations (ADAMS and WARD  1973). The 
estimate of Yanomamo ancestry for Borabuk  pre- 
sented here is lower than,  but  not significantly differ- 
ent  from,  the value published earlier (LONG and 
SMOUSE 1983). The difference between the two esti- 
mates is due to the fact that in the  1983 study an 
admixture  estimate was calculated for each locus in- 
dividually, and  then a weighted average across loci 

was obtained; in the present study a single estimate 
was iterated  over  the  entire  set of loci. 

The standard  errors of admixture estimates are 
quite  high. More interesting are  the variances of the 
admixture estimates, and  their partition  into sampling 
and evolutionary  components. In all three popula- 
tions, the vast majority of the variance of the admix- 
ture estimates is due to evolutionary, rather than 
sampling error.  Therefore,  the variance of estimated 
admixture  proportions  can  be seriously affected by 
genetic drift,  despite  earlier claims for  the Afro-Amer- 
ican populations (WORKMAN, BLUMBERG and COOPER 
1963;  BLUMBERG and HESSER 197 1).  

Admixture estimates computed by locus, Mi, their 
variances, V(Mi), and contributions, x:, to the  heter- 
ogeneity chi-square statistic are presented for  the 
three populations in Table 3. Although  the  admixture 
estimates appear  heterogeneous across loci, it is clear 
that each estimate has an  enormous variance associ- 
ated with it, and  the chi-squares computed  over all 
loci  within these three populations do not  approach 
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FIGURE 3.-The relationships  between ( p h 2  - P2,) and (PI, - P2,). 

This relationship should be  linear with slope @ (by Equation 2). The  

TABLE 4 

Population  structure  interpretations 

Hybrid  Census  Effective  Ratio 
populat,on MSE d.f. FZT. size (N.) size (N,) N,/N. 

Claxton 0.017 11 0.013 1287 349 0.27 

Sapel0 0.030 I 1  0.027 211 216 1.02 
Borabuk 0.158 10  0.152 5100 218 ?0.l8 

statistical significance. Despite the  broad  scatter of 
admixture estimates from  the individual loci, the 
goodness of fit of the  linear admixture model is 
revealed in Figure  3 by plots of - Pzi) versus 
(Pit - P 2 J ,  as suggested by Eq. 2. While the graphical 
displays are compelling, their  interpretations must be 
tempered with the knowledge that  the points are 
heteroscedastic and  that  interdependence of error 
terms exists among  the points representing alleles 
segregating at  the same locus. 

Further analyses of these populations are presented 
in Table 4. Since a significant x* is not  obtained in 
any of these populations, evidence for  natural selec- 
tion is lacking, and FST and  the effective population 
size was estimated  for each population. The relative 
ranking of F& for these populations, Claxton (0.01 3) 
< Sapelo (0.030) < Borabuk  (0.152),  conforms to what 
would be expected  from  the social demography of 
these groups. The estimates of Ne are biologically 
reasonable for Claxton (349)  and  Borabuk (2 18). This 
is evidenced by the fact that  the ratios of their effective 
sizes to census sizes are, respectively, 0.27 and 20.18. 
The estimated Ne for Sapelo Island (2  16) is unusually 
high since this would suggest that  the effective size is 
greater  than  the census size. 

The percentiles of the bootstrapped  distributions 
for  these estimates are presented in Table  5.  These 
distributions are widely dispersed;  however, the  95% 
confidence interval  for Sapelo Island [I  19, 4831 still 
suggests that Sapelo Island had  an uncharacteristically 
large effective population size. A likely explanation 
for this result is that the Sapelo Island population has 
received immigrants  from other Afro-American com- 
munities. In other words, genetic  drift  on Sapelo 
Island has been affected by immigrants  from  both  the 
Caucasian population  and other Afro-American pop- 
ulations. Since there were only four  recorded cases of 
miscegenation in the history of Sapelo Island, and 
very  few permanent Caucasian inhabitants of the is- 
land (BLUMBERG and HESSER 1971), it is not unlikely 
that  a  portion of the Caucasian genes in the Sapelo 
Island population were actually introduced by ad- 
mixed Afro-Americans. 

slopes of  the  plotted lines are  the  estimated  proportions of  African 
ancestry in the Afro-American populations  and  the  proportion  of 
Yanonwno  ancestry in the Borabuk population. 
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TABLE 5 

Percentiles of bootstrapped  distributions of Nt 

Population 

Percentile Claxton Sapelo Borabuk 

Min 
1 
2.5 
5 

10 
25 
50 
75 
90 
95 
97.5 
99 
Max 

117 
162 
178 
194 
216 
265 
34  1 
457 
618 
745 
88  1 

1069 
2305 

82 
109 
119 
128 
140 
166 
205 
265 
347 
413 
483 
596 

2150 

7 
13 
14 
16 
17 
21 
26 
34 
46 
58 
72 
98 

614 

Each distribution is based on n = 10,000 bootstrapped trials. 

DISCUSSION 

The objective of this study has been to provide  a 
framework for estimating the effects of genetic  drift 
and  admixture simultaneously. Thereby,  the value of 
admixture estimates for analysis  of hybrid  population 
structure is enriched,  and  an  appropriate null hypoth- 
esis for  the  detection of natural selection can be  for- 
mulated.  It was shown that Wright’s fixation index 
FST  is closely related to  the  error variance of allele 
frequencies  predicted by admixture,  and  that FST can 
be estimated  from  a multiple locus sample of hybrid 
population allele frequencies,  providing  that there is 
information  on the allele frequencies in the  contrib- 
uting  parental populations. 

There  are two existing methods  for  estimating  ad- 
mixture  proportions  that allow for  both  evolutionary 
and sampling error (THOMPSON 1973; WIJSMAN 
1984); each of these methods  requires  independent 
knowledge of the variance effective population size  of 
the  hybrid  population  over its entire  evolutionary 
history, and  that  the  admixture process was that of 
the  Intermixture Model. However, variance effective 
sizes  of populations are seldom known, and  the  Inter- 
mixture Model does  not apply to all admixed  popu- 
lations. Superimposition of the  intermixture model 
onto populations for which gene flow  is more  appro- 
priate would clearly be misleading. Perhaps the  great- 
est advantage of the estimation procedures  developed 
here is that FST can be estimated  regardless of the 
underlying  population structure,  and  the  drift cor- 
rected chi-square test for  heterogeneous  admixture 
proportions can always be  applied. 

Evolutionary variance in admixture estimates over- 
whelmed sampling variance in analyses of three  ad- 
mixed human populations. This finding is especially 
important since it was originally argued  that  drift 
should not have been  a significant force in two of 
these populations (see WORKMAN,  BLUMBERG and 

COOPER 1963;  BLUMBERG and HESSER 197  1). The 
chi-square statistics for  heterogeneity of admixture 
estimates did  not  attain statistical significance in any 
of these populations. Earlier, significant chi-squares 
had been obtained  for  Claxton  and Sapelo Island 
Blacks (ADAMS and  WARD  1973),  although  these in- 
vestigators were duly cautious in their  interpretation. 

In the absence of evidence for  natural  selection, it 
is possible to estimate effective population sizes. Ne is 
a  fundamentally  important  parameter in population 
genetics that links simplified theoretical models to 
natural and artificial populations; yet Ne is notoriously 
difficult to estimate, as noted by LAURIE-AHLBERG 
and WEIR (1979),  HILL  (1981), WOOD (1987),  and 
WAPLES (1989) in other contexts. The estimation 
methods  presented here should  prove to valuable to 
the analysis  of hybrid populations. 

Fundamental  to the  interpretation of estimates of 
Ne is knowledge of the distributions  the estimates will 
follow. The bootstrap  method suggested here is only 
a  rough  approximation. Ideally, if the  original  number 
of alleles sampled is large,  then  the empirical distri- 
bution will closely approximate  the  true distribution. 
For smaller samples, such as those analyzed for  the 
three example human  populations, the  interpretations 
should be cautious. It should also be  noted  that  the 
bootstrap  method is not without underlying assump- 
tions. It clearly assumes that  the original data were 
drawn  independently  from the same distribution. 
These assumptions are unlikely to hold considering 
that alleles may co-segregate within loci and  that  the 
distribution of N $  may vary from allele to allele. 
Refinements on this approximation will be  a  fruitful 
area  for  further  research. 

As a final point,  the utility of the  procedures devel- 
oped here should be applicable for  purposes beyond 
analysis  of population genetic structure. For example, 
epidemiological interest in hybrid  populations has 
been increasing. Hybrid  populations have recently 
been shown to present  unique  opportunities  for the 
estimation of modes inheritance  for diseases  of com- 
plex etiology (CHAKRABORTY  and WEISS 1986)  and 
for  the estimation of recombination  fractions  (CHAK- 
RABORTY and WEISS 1988). Precise estimates of an- 
cestral contributions are  required in each of these 
circumstances and  the methods  provided here will be 
broadly applicable. The results of this study indicate 
that  drift error must always be  considered in admix- 
ture estimates and  that simultaneous assay of many 
marker loci will be preferred. 
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Note Added in Prooj An anonymous reviewer has 
shown that  the statistics M and MSE, as defined  in this 
paper, can be  obtained  from  a  set of equations that 
do not  require  eliminating  one allele from each locus 
for  computation. 
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APPENDIX 

Proof  That Any Allele Can  Be  Dropped  With  the 
Weighted  Least  Squares  Procedure 

Consider  a locus with an  arbitrary  number of alleles 
A I ,   A , ,  . . . Az, with frequencies (PI, p , ,  . . . , p z )  in the 
hybrid population and ($11, pzl, . . . , p z l )  in the first 
parental  population and ( P I , ,  p 2 2 ,  . . . , pz2) in the 
second parental  population. Define XT = [(pll - p , , ) ,  
( P Z I  - P z z ) ,  . . . , ($21 - ~ z z ) ]  and yT = [ ( P I  - p12), 
(Pz - P 2 2 ) ,  . . . , (Pz - Pzz ) ] .  The equation  for the 
Weighted Least  Square estimate of the  admixture pro- 
portions is given by 

M = ( x s ~ v - ’ x s ) - ’ x s ~ v - ’ y s  (A) 

where the  “shortened” vectors Xs and ys are obtained 
from  the “full” vectors X and y by eliminating the Zth 
element. V has dimension (Z - 1 by Z - 1) and it is 
the variance-covariance matrix of the multinomial 
distribution (N  = 1). It is easily verified that V” can 
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be  written out explicitly as 

. . .  
9 

. . .  

. . .  . . .  . . .  , 

1 
Pz 
1 

Pz 

- 

- 

1 1 - 
Pz ' pz-I p ,  

. . . )  - + q  

Equation AI can now be  rewritten as follows 

i= 1 
M = z--l 1 1 z--l 

Xi[.. - + - * 
i= 1 p i  PZ ,=I 

Let the allele to be dropped  from analysis be desig- 
nated A d .  So far, we have let AZ be A d ,  now we will let 
Ad be any of the 2 alleles. We will show that this leaves 
Equations 1 and 2 unaffected. Some special notation 
is required, 

Z 

C xj 
j = 1 ,  
j # d  

will mean that  a sum will be  taken  over all alleles, 
except A d .  For example, if d = 3 and Z = 5 ,  then 

Z 

x j  = (x1 + x:! + x4 + xg). 
,= 1 
j # d  

Now, the estimator  for admixture  proportions can 
be rewritten as 

r 1 

To prove  that any allele can be dropped, Equation 
A2 must equal Equation A3. We begin by proving the 
identity of the  numerators 

r 1 

r 1 

i#d j # d  

r 1 

r 7 

r -I 

j # d  

To complete the  proof,  the identity of the denomi- 
nators ( 0 2  and 0 3 )  is now proved 

NOW using the  identity and xz = - xi ,  

r 

r 1 

r#d 

r 1 

Since it has been proved that  the  denominators of 
Equations A2 and A3 are equal, and  that  the  numer- 
ators of Equations A2 and A3 are equal, it is proved 
that  the same admixture  estimate is obtained no mat- 
ter which allele is eliminated  from  the system. 


